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The assumption that the kinetic energy contained in an arbitrary finite volume 
of fluid moving near the edge of a two-dimensional wedge is itself finite, is 

used as the basis for the investigation of asymptotic behavior of the form 

assumed by the surface of a perfect fluid near the edge. Explicit expressions 

are obtained for the form of the surface of a perfect fluid near the edge of a 
two-dimensional wedge, for basins of constant depth, at rest and rotating at 

a uniform rate. 

Certain problems of the theory of wave motion in which nonsmooth boundaries 
(edges) appear, e. g. when the region in question is bounded by a nonsmooth surface, 

can have several mathematically correct solutions, but only one of these solutions will 

describe correctly the physical phenomenon investigated. In such a case additional 

physical constraints must be introduced in order to ensure the uniqueness. It is propos- 
ed that the requirement that the kinetic energy is finite in any finite volume of fluid 

Fig. 1 

when the volume V near the edge tends 

to zero. If the edge represents a smooth 
curve, then it can be replaced bY a 
straight line at every of its points, and 
local cylindrical coordinates can be intro- 

duced at the edge. Condition (1) can 
be used to show that none of the compon- 
ents of the velocity vector v canincrease 

faster than p-lft (T > 0). Strictly speak- 
ing, to obtain a unique solution of the 

wave equation it is sufficient to find the positive lower bound of the quantity T. In 

many cases however is helpful if the exact value of t is found. 
We shall show how, using the linear theory of long surface waves we can derive 

the condition at the edge in a tank rotating uniformly with angular velocity o about 
the : -axis directed along the edge of a perfectly rigid, two-dimensional wedge with 
an arbitrary opening angle (see Fig. 1). We assume that in the absence of rotation 

moving near the edge be adopted as such 
a constraint, and be called the condition 

at the edge. The condition is equivalent 
to the requirement t!;at 
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and perturbations, the free surface coincides with the plane z = 0 of the cylindrical 
r, ‘p, 2 -coordinate system. The velocity components UT, vV and L’: as well as 

their derivatives with respect to r, CP and z, are assumed small, and the pressure 
dependence is determined by the hydrostatic relation 

P =pg(5-2) (2) 

where p is the fluid density, g is acceleration due to gravity and 5 is the rise in the 
fluid surface. 

The Navier-Stokes equations have a known particular solution for these assump- 
tions [l, 21 and the solution is 

VI. = u cp = vz = 0, 5 = ++ K(t) (3) 

We continue our analysis by inkoducing a new variable &, so that 

cd= r, - ($ rlf K (t)) 

substituting (2) and (4) into the NavierStokes equations and the equation of continuity, 
we obtain the following system of equations for the three unknown functions VT* VQ 
and <I : 

&J 

r=- 
at 

(5) 

We assume that the tank is of constant depth h , and the dependence of the unknown 
quantities on time is of the form exp tot. 

Having demanded that the kinetic energy be finite in any finite volume of fluid 

moving near the edge, we find that vr and vcp vary near the edge as r-l+’ (z > 0) 

and can be written as r + 0 , in the form of power expansions 

vr = r-l+’ (a~ + air + a/ + . ..) (6) 

vq = r -‘+’ (bo + b,r + b,ra + . ..) 

We define the free surface in the same manner. 

51 = rT (cO + clr + czra + . ..) (7) 

Substituting these expansions into Eqs. (5) and equating the coefficients of like power 
in r , we obtain the following system for the unknown functions in the zero approx- 
imation: 

ioa, = -rco + 2ab,, 
ac0 

iob, = - --q - 2ca,, abo rao + acp = 0 

This yields the equation for determining b, (cp) 
d~bofQ” + +bo = 0 

solution b, = A sin (tcp) + B cos (T(F) of the above equation determines the velocity 
vQ normal to the wedge sides and vanishing at the sides. This yields B=O,A 

sin “pl = 0. The problem has a nontrivial solution when 
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The upper bound of the order of singularity of the power series (6) and (7) is deter- 
mined by the smallest root of Eqs. (8) 

T ---_ n: / $11 
(9) 

For example, near the edge of a half-plane standing on the bottom of the tank, the 
surface rise & behaves as r’/’ (in this case ckl = 23). 

Using the proposed scheme, we can find the order of singularity for the case when 
the tank is at rest. Equating the Coriolis and centrifugal forces to zero, we obtain an 
expression for -c which coincides exactly with the already known expression [ (9). 

In conclusion, it should be pointed out that the fact that the expression for T is 

simple, is due to the character of the assumptions made, One of the assumptions was, 
that the wedge edge has infinite curvature. Adoption of this assumption leads to con- 
siderable reduction in the difficulties encountered during the actual tracing of the 
border line. In addition, combining this assumption with the condition at the edge 
of the form (9), yields satisfactory results in certain modelling problem of wkve prop- 

agation in the geophysical basins. This was done in e. g. [3,4]. 
For more accurate computations, a condition at the edge which takes into account 

the finite curvature of the edge, the length of the wave and possibly other parameters, 

becomes necessary. 

REFERENCES 

1. S t o k e r, J. J. Water Waves, Wiley, New York, 195’1. 

2. S r e t e n s k i i, L, N. Theory of Wave Motion in Fluids, Moscow -Leningrad, 
ONTI, Gostekhizdat, 1936. 

3. G a b o v, S. A. Application of the Sretenskii method to a problem of the theory 
of waves in Chanuels. (English translation), Pergamon Press, J. U. S. S. R 

Comput, Mat. mat. Phys. vol. 15, No. 1, 1975. 

4. P 1 i s, A. I. and P 1 i s, V. I. Diffraction of the Kelvin wave on the open end 
of a plane channel in a rotating basin. VU Vses. simpozium po difraktsii i 

raspostraneniiu voln, Rostov-on-Don, 1977, Moscow, 1977. 

Translated by L. K. 


